
JOURNAL OF COMPUTATIONAL PHYSICS 41, 389-406 (1981) 

Richardson-Sielecki Schemes for the Shallow-Water Equations, 
with Applications to Kelvin Waves 

R. F. HENRY 

Institute of Ocean Sciences, Sidney, British Columbia VSL 4B2, Canada 

Received April 28, 1980 

Using Kelvin waves for illustrative purposes, this paper shows that a common linite- 
difference scheme, used in tide and storm-surge models, actually distorts long waves by 
changing the orientation of wave crests and troughs. The magnitude of these errors is 
discussed for a simple model representing the North Sea. Modifications are discussed which 
correct these effects without sacrificing the computational economy of the original scheme. 

1, INTRODUCTION 

Finite-difference schemes based on a single Richardson grid [ 1 ] have the 
advantage that they minimize the number of variables which must be computed for a 
given degree of spatial resolution. Certain of these schemes achieve further 
computational economy by using only the most recently computed value of the 
variable appropriate to each grid point. Consequently, no memory space is needed for 
values at other time levels and no time is spent copying data arrays simply in order 
to update variables. 

One such scheme has been used quite extensively for the shallow-water equations 
in model studies of tides and storm surfes (2-41 and can be conveniently designated 
in such applications as the Richardson-Sielecki scheme since it involves calculating 
variables on a Richardson grid using a particular method of handling the Coriolis 
terms introduced by Sielecki [5]. One of the purposes of this paper is to illustrate 
hitherto unsuspected distortion of long waves produced by this difference scheme. 
Later a modified Richardson-Sielecki scheme introduced by Prandle [6] is analysed 
and shown to eliminate the unwanted effects experienced with the original scheme. 

Numerical tests were carried out for a particularly simple case, Kelvin waves in a 
uniform depth channel governed by the linearized, shallow-water equations. This 
permits comparison with analytic solutions to the relevant difference equations and 
permits quantitative study of the distortions in question, unobscured by initialization 
and truncation errors which are unavoidable in more complicated models. Similar 
effects must occur in numerical models of realistic long-wave problems and introduce 
errors which can substantially affect the validity of the results. 
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2. KELVIN WAVES 

In the linearized form relevant here, the shallow water equations are 

rt = -h(u, + qJ, (la) 

u, = -grl, + fk (lb) 

v, = -gr>, - fu, (ICI 

where q is surface elevation relative to mean water level, u and ZI are velocity 
components in a horizontal Cartesian coordinate system (x, y), f is the Coriolis 
parameter and h is the uniform mean water depth. Essentially these equations are 
adequate for explaining the behaviour of all long waves such as tsunamis, surges, 
seiches and tides in uniform depth basins where advection and friction are negligible. 

The most general wavelike solution to Eqs. (1) can be written as 

r =A,, exp[i(ot + kx + ly)], (24 

u = A, exp[i(wt + kx + ly)], (2-b) 

u = A, exp[i(ot + kx + ly)], PC) 

where A,,, A,, A, are interrelated complex amplitudes; LU is frequency (assumed 
positive); k and 1 are wave numbers in the x and y directions, respectively; and c is 
the wave speed, given by c = (g/z)“*. Substituting (2) into (1) leads eventually to the 
following dispersion relation for long waves in uniform depth water: 

co* = c*(k* + 1’) + f *. (3) 

Central to the following discussion is a special class of solutions, known as Kelvin 
waves, which can propagate parallel to a straight coastline, with zero transverse 
velocity. They are prototypes of most tides in real ocean basins. Without loss of 
generality, one can narrow discussion to the case of a coast coincident with the x- 
axis. If the water-filled basin occupies the positive y half-plane, the only physically 
realizable Kelvin wave has 

k=-:; 
c 

the corresponding solution being 

r] = Be-fy’c sin(wt - 1 k 1 x + #), 

u = $ eefyic sin(wt - / k 1 x + #), 

(4) 

(5) 

u = 0, 
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where B is an arbitrary real amplitude and # is an arbitrary phase angle. The 
notations -jk( and t/k/ will be used wherever necessary to indicate that a 
wavenumber is negative (progressive wave) or positive (regressive wave). Where a 
wavenumber may assume positive or negative values, it is written simply as k. When 
the basin occupies the negative y half-plane, it is possible to have 

k=w; /=-if 
C c 

with corresponding solution 

7 = B&” sin(ot t kx t #), 

u = -$- dyic sin(wt + kx t q5), 

v = 0. 

(7) 

It can be seen that in both instances the Kelvin wave must have the coast on its right 
(in the northern hemisphere) relative to the direction of travel and that wave crests 
and troughs are perpendicular to the coast. Wave amplitude decreases exponentially 
in the seaward direction. 

In a straight channel, Kelvin waves can propagate along the channel in both 
directions. For instance, a channel with sides parallel to the x-axis (west-east axis) 
may have progressive Kelvin waves of type (5) bound to the southern shore and 
regressive waves of type (7) bound to the northern shore. 

3. THE RICHARDSON GRID 

Adoption of a Richardson grid as the basis for a finite-difference approach to 
solving the shallow-water equations (1) implies that the dependent variables q, u and 
u are to be determined at points positioned relative to one another in (x, y, t)-space as 
shown in Fig. 1. Many of the other grids used for discrete shallow-water equations 
are superpositions of two or more Richardson grids [7]. Provided that a single 
Richardson grid provides appropriate points with which to implement some specified 
difference scheme, its use will minimize the number of values of r, u and v which 
have to be calculated in order to achieve a given spatial resolution over the model 
domain. 

Some system of indexing the variables on the grid is necessary and here the 
notation ?j&, u::“~, vS,+,“~, will be used to indicate the variables whose spatial layout 
is shown in Fig. 2. The superscripts refer to the relevant time levels indicated in 
Fig. 1. 

For economy in computing finite differences, the grid interval sizes dx and dy are 
usually held constant throughout the model domain. The choice of values for dx and 
dy in a given model is normally based on the spatial resolution required. 

SRi~ill/Z II 
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FIG. I. Portion of a Richardson grid 

4. THE RICHARDSON-SIELECKI FINITE-DIFFERENCE SCHEME 

FOR THE SHALLOW-WATER EQUATIONS 

To understand the origins of the Richardson-Sielecki (henceforth R-S) scheme for 
the shallow-water equations it is useful to look at two schemes used for the simple 
wave equations in two dimensions: 

FIG. 2. Notation of discretized variables. 
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Using the notations of Section 3 and a Richardson grid, consider first the simple 
time- and space-centered scheme 

‘I Sfl 
mn - ?#l& = -h 

At 
us,f+‘fn - l&y2 + vsnf;y, - v;y2 

AX I AY ’ 

u $+3/Z 
inn 

_ us t I/Z 
mn = rl ",',' - en'_", ,n 

At -g Ax ’ 

V st3/2 St l/2 
mn - vnln r 2 - tl”,fL 

At =-g Ay ’ 

(9) 

If l&, Vin, z&i’, 0;;’ are written in place of u~~“~, ~smfn”~, uS,+,~‘~, US,+,“’ in (9), the 
so-called “forward-backward scheme” [7] is obtained. The notation of this second 
scheme implies that u- and v-points occur at the same time levels as the u-points; that 
is, the underlying grid differs from a Richardson grid (Fig. 1). But the schemes are 
essentially identical. Except in problems where both elevation and velocity are 
specified as functions of time at some boundaries, the numerical values of q, u, v 
computed with both schemes are identical, given the same initial state. The fact that 
scheme (9) in conjunction with a Richardson grid is the most appropriate inter- 
pretation of the computed values can best be illustrated by a simple example. 

Taking the case of a plane sinusoidal wave propagating in the positive x-direction, 
the exact solution to difference equations (9) is then 

vbn =Bsin[ws.At-Ik)m.Ax+9), W> 

u f,,~“‘=(gB/c)sin[o(s+~)At-lkJ(m-i)Ax+#], (lob) 

V s+1/2 _ 
mn - 0, (1Oc) 

where At is the time step between two successive evaluations of a given variable. The 
presence of the factors (s + +)At and s . At in (lob) and (lOa) indicate that in effect 
the velocity u,, defined in (lob) pertains to a time level which is jAt later than that 
of rmn defined in (10a); that is, the relative position in time of these variables is as 
shown in the Richardson grid in Fig. 1. 

If, on the other hand, the notation uh,, vk,,... is used in place of u~~“~, ~Sm+n’/~,... 
giving the forward-backward scheme, with uin, oh,, apparently on the same time 
level as r&,, it is natural to take the progressive plane wave in question to be 

rlil” =B sin(ws . At - (k( m . Ax + 41, (114 

4n, =(gB/c)sin[os.At-Ik((m--i)Ax+#], (1 lb) 

4ml = 0. (1 lc) 

(The factor (m - 4) . Ax in (1 lb) remains, expressing as it does the half-grid interval 
spacing between F,&, and u;,, .) However, if q, u and v are evaluated from Eqs. (1 l), 
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say at s = 0, and used as initial conditions in the forward-backward scheme, it is 
found that in addition to the required progressive wave, a smaller regressive error 
wave is also generated. Whereas it has been common practice to use the notation of 
the forward-backward scheme and its implied grid for the shallow-water 
equations 12-41, in the following treatment a Richardson grid is presumed and the 
difference schemes involved are viewed as derived from (9), in order to eliminate the 
risk of errors of the type just described. 

Turning to the linearized shallow-water equations (l), it can be seen that inclusion 
of the Coriolis terms causes some difficulty in any grid where velocities u and u are 
not calculated at coincident points. v has to be averaged in some manner for use in 
the equation for U, and vice versa. Further, in order to avoid numerical instability of 
the whole scheme, it is necessary to pay attention to the time levels of the velocity 
values used for the Coriolis terms. Sielecki [5] devised a stable scheme in which the 
velocities used for the Coriolis terms in the u and v equations come from different 
time levels. With the use of spatial averaging where necessary, on a single Richardson 
grid Sielecki’s approach gives the following finite-difference equivalent to Eqs. (1): 

VW 
rt PSI - rr”,, = _ h s+ 112 Inn 

At 
hi+ 1.n - GlY2 + d7y:‘1 - f-cz’/* 

Ax 1 AY ’ 
us+ 31-l Inn _ u’ t II2 

mn = drzl’ - sffz.. 
At -g Ax 

+ $ [ V”m+-L:fn + v;:-I:in + , + v”,‘n I’* -I- q;‘:, I, 

(12b) 

Provided that all the n”,‘,’ are evaluated first, and then all the uS,+,~‘*, this scheme has 
the economical property that only the most recently calculated value of each variable 
need be stored. For instance, the values vS,~,“~, v~,,‘~~,... used in (12b) are available 
from the previous time step when u,, st3’2 is calculated and the updated values us,+,,“*, 
us + 312 m+ l,nr... are all calculated just prior to their use in (12~). This permits use of single 
arrays of u and u values, z.&~*‘~ being overwritten by us,fn3’* as soon as the latter is 
calculated and similarly with u. As well as reducing storage requirements, this implies 
that no labelling of variables with respect to time level is required at the 
programming stage. 

5. STABILITY AND DISPERSION RELATIONS FOR THE 
RICHARDSON-SIELECKI SCHEME 

If any solution to Eqs. (12) is unstable, i.e., grows exponentially with time, then the 
system is termed numerically unstable, since computational roundoff error can be 
counted on to initiate every unstable solution and the required solution is very soon 
swamped by growing error. For linear difference equations such as (12), a suitable 
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stability criterion can be derived by considering the behaviour of the fundamental 
solutions, in terms of which all other solutions can be expressed. 

A convenient form in which to write fundamental solutions to Eqs. (12) is 

s = A,, exp[i{ws . dt + km . Ax + In . Ay}], 

u”l’=A.exp[ilw(s+i)A~+km.Ax+~~.Ay}], mn 

v$“~ =A,exp[i{w(s +i)dt + km . Ax + In. Ay}]. 

(13) 

Here, A,, A, and A, are constants determined by the initial conditions. Substituting 
(13) into (12) gives three simultaneous linear equations in A,,, A,, and A,. For a non- 
trivial solution, the determinant of the corresponding coefficient matrix must equal 
zero. This leads to a cubic equation in I = exp(io . At) which factorizes to give 

and 
A-1=0 WI 

A2 - (2 -A)L + 1 = 0, (14b) 
where 

A = 4c2At2 
sin’ fk - Ax sin* $1. Ay 

Ax* 
+ 

AY’ I 
+ (f . At cos jk . Ax cos il. Ay)’ 

fC2At3 
- ___ sin k . Ax sin 1 - Ay. 

Ax . Ay 

It is clear from the form of (13) that whether the solution is stable (bounded) or 
unstable (exponentially increasing) is determined by the magnitudes of the factors A. 
For stability it is necessary that all three roots should satisfy 

PI < 1. (15) 

The root defined by (14a) obviously satisfies (IS); it corresponds to a steady state 
solution, w = 0. The two roots associated with (14b) are reciprocals of one another 
and hence the stability criterion (15) can be satisfied only if 

JL I= 1 exp(io + At)1 = 1, i.e., w is real. (16) 

Rewriting (14b) with trigonometric instead of exponential forms leads to the 
following dispersion relation for waves in a Richardson-Sielecki model on a grid 
without boundaries: 

sin2 iw . At = c2At2 
sin* jk - Ax sin* 41 . Ay 

2 Ax* + Ay* I 

+ (if. At cos fk . Ax cos $1. AY)’ 

_ fc*At’ 
4Ax - Ay 

sin k - Ax sin 1 . Ay. (17) 
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The stability condition (16) is equivalent to the requirement 

)sin+o.fltl,<l. (18) 

For feasible values off, as At is increased the stability condition is violated first at 
the highest wavenumbers possible, which are [7] 

k=$, l=g. (19) 

To avoid numerical instability, it is therefore necessary to limit the size of time 
step used to 

At<c-’ (-&++J”‘. (20) 

Analysis of stability is much more complicated when the model grid is of finite 
extent. The governing system of finite-difference equations has a finite number of 
fundamental solutions, whose wavenumbers depend on the geometry of the grid. 
Numerical experiments show, however, that when land boundaries are represented by 
a zero transport condition (e.g., u - 0) or where the interaction with a neighbouring 
water body is represented by specifying the boundary velocity as a function of time, 
then the stability criterion (20) still applies. 

6. KELVIN WAVE SIMULATION WITH THE RICHARDSON-SIELECKI SCHEME 

In order to understand the implications of the complicated dispersion relation (17) 
for the Richardson-Sielecki scheme, it is useful to introduce the idea of “relatively 
long” waves, A grid on which variables are sampled at points As apart can be used to 
model waves with wavenumbers up to n/As, since sampling theory dictates a 
minimum requirement of two samples per wavelength. However, to minimize errors 
due purely to the dhcretization, such as incorrect wave speed, it is always advisable 
to choose a grid spacing which gives at least 10 and preferably 20 or 30 sample 
points per wavelength for waves which are physically significant in the problem being 
modelled. At such high spatial resolution, where the waves in question are relatively 
long compared to the grid interval, the arguments of all the trigonometric terms in 
(17) are small and it is possible to write 

sm$waAt-$oeAt, sin fk . Ax N fk . Ax, cosjk . Ax- 1, etc. 

Thus for relatively long waves, the dispersion relation (17) can be written approx- 
imately as 

co2 = cZ(k2 + I’) + f’ - fc’kl + At. (21) 
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Comparing this with (3), it can be seen that the method of representing the Coriolis 
terms in the R-S scheme introduces the spurious term -fc*kZAt into the dispersion 
relation for relatively long waves. This causes at least two types of error. Discrete 
models are generally non-isotropic, in the sense that wave speed depends on direction 
of propagation. With some difference schemes (e.g., Fischer [8]), the non-isotropy is 
negligible for relatively long waves, but with the R-S scheme, the effects of the extra 
term in the dispersion relation do not decrease with wavenumber. For example, two 
relatively long waves with wavenumber vectors (k, 1) and (k, --I), which have the 
same wavelength d = 2r/(k* + I ) * V2 have slightly different frequencies (and speeds) , 
according to (2 1). 

Another error introduced is the slewing of wavefronts, which can be illustrated 
explicitly by looking at the analogs of Kelvin waves in a Richardson-Sielecki model. 
Consider, as in Section 2, the case of waves bound to a coastline parallel to the x- 
axis. Assuming that the waves are relatively long, the relevant dispersion relation (17) 
can be satisfied through having 

and 
c212 - fc*kl . At + f’ = 0. 

There are two solutions of practical interest. Corresponding to Eq. (4) there is the 
case 

k = -o/c; l=p + ia, (22) 

where 

/3=$-k. At, a = (f/c)1 1 - (fw . At)*]“*. 

The corresponding solution, analogous to (5), has the form 

em =Be-““~Aysin[ws~At-~k~m~Adx-/?n~Ay+~], 

u~~,+,‘i* = (gB/c)e-an’Ay sin[w(s+j)At-/kJ(m-f)Ax-@.AY+#], (23) 

V 
s+ l/2 _ 
mn - 0. 

The other case of interest is the regressive wave 

(cf. Eq. (6)) which gives 
k = q/c; 1=/3-ia (24) 

vi, = Benn’*J’ sin[ws~At+/kJm~Ax+/hz~Ay+~], 

u ~1‘1/2 = -(gB/c)e”“‘*J’ sin[w(s+$)At+Jkl(m-~)dx+Pn*A~+#], (25) 
vs+ v* = 0, mn 

This form is the equivalent, in an R-S model, of solution (7) in the continuous case. 
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FIG. 3. Slewing of Kelvin waves by Richardson-Sielecki scheme. (-) Wave crest; (---) wave 
trough; (JJ coastline; ( + ) direction of propagation. 

Since w . At 4 1 for relatively long waves, a N f/c, which means that the rate of 
amplitude decay in the seaward direction differs only slightly between the R-S model 
and the continuous case. However, the fact that 1 has a non-zero real part, /3, for the 
R-S scheme means that the phase increases linearly with distance from the coast; 
that is, crests (and troughs) are slewed backwards with respect to the direction of 
travel, as shown in Fig. 3, whereas in the continuous case, wave crests are perpen- 
dicular to the coast. 

To gain some idea of the magnitude of the slewing effect, take as an example a 
rectangular basin closed at one end and driven by an incoming Kelvin wave at the 
open end. This type of model was used by Taylor to represent a semi-diurnal tide in 
the North Sea in his classical paper [9] on Kelvin and Poincare waves. Suitable 
values for the model parameters are: 

W=544km (basin width), 

f = 1.223 x 10e4 set-‘, 

w = 1.4052 x 10e4 set-’ (M, tide), 

g = 9.8 1 m/sec2, 

h = 75 m. 

Assuming a Richardson grid with 16 grid intervals across the basin and with equal 
grid intervals in the x and y directions, 

Ax=Ay=34km. 

With this grid, the maximum permissible time step, defined by (20), is At = 
886.3368 set; a value of At = 885 set will be assumed in the subsequent calculations. 

Using the above values, Eqs. (22) give 

k = 5.1805 x 10e6 m-l, 

I=/3 + ia = 2.8036 X lo-’ + i4.5001 X lop6 m-l. ’ 

’ For comparison, it may be noted that the exact solution of Eq. (17), not using the “relatively long 
wave approximation, in this case is k= 5.1839 X 10e6 m-‘; l= 2.8072 x lo-’ t i4.4912 X 10d6 m-l. 
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Consequently, PW = 0.153 rad = 8.74”. This means that if the incoming semi-diurnal 
lunar tide in the North Sea is represented as a Kelvin wave bound to the English 
coast, southbound wavecrests are 12.7 min late on the opposite (European) coast in 
the R-S model. Errors of this nature, though possibly acceptable in some 
applications, could be troublesome in other cases, for example, if accurate location of 
amphidromic points is required. 

The performance of R-S models is improved in some respects by removing the 
obvious asymmetry in the treatment of u and u and it is quite common practice to 
calculate the variables in the orders r, u, ZJ and q, v, u on alternate steps. In other 
words, there is an exchange of advanced and retarded Coriolis terms on alternate 
time steps. However, the dispersion relation (21) is unaffected by this procedure, 
which means that the anistropy and slewing errors described above persist. 

Using a finer grid does reduce these errors, since smaller values of Ax and Ay 
require use of smaller At to maintain computational stability and this in turn reduces 
the extraneous term in (21) which is the source of the errors. But this measure is 
costly in computer time and storage requirements and curing the problem by 
modifying the difference scheme, as described in the following section, is more prac- 
ticable. 

Although this discussion of errors in the R-S scheme has been limited to only 
relatively long, coastally bound waves, these play an important role in many tidal 
problems. Further, it is highly probable that similar undesirable effects occur with 
shorter waves for which the simplified dispersion relation (21) does not hold. The 
restriction here to a model basin of uniform depth is immaterial since coastally bound 
waves analogous to Kelvin waves occur when the bathymetry is variable and errors 
similar to those described can be expected in R-S models of real basins. The errors 
which may occur when modelling fully two-dimensional waves are practically beyond 
analysis, in view of the complicated form of (17). 

7. A MODIFIED RICHARDSON-SIELECKI SCHEME 

Relatively simple changes to the basic Richardson-Sielecki scheme (12) for 
Eqs. (1) can produce significant changes in the dispersion relation and hence in the 
fidelity with which waves phenomena can be modelled. Prandle [6] introduced a 
scheme, which when applied to Eqs. (l), takes the form 

(264 v S-t1 mn - r&, = -h 
At 

u;yn - uy2 + v;;,“:, - v;y* 
AX I AY ’ 

u s+3/2 _ US t I/Z 
v 

St1 st I/2 
mn mn 

At =-g 
mn - VP?-1.n 

AX 
+ $ [v;+13& + v;+-3):‘f,+, + v;y* + v;;:‘, 1, 

Pb) 
vs t 3/Z 

mn 
_ us+ l/2 

mn = rl 

At -g 
",',' - ~",'I,'-, f 

AY 
4 [zG3’lz + u;:;!!, + u$yn + u;+$, - , J. 

(26~) 
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This scheme differs from (12) in that the velocities used in each Coriolis term now 
lie on a sloping plane in (x, y, t)-space. These averages are now time- and space- 
centred in the sense that the centroid of the four values used in each is coincident in 
space with the variable being updated and midway in time between the old and new 
time levels. 

Use of (26) in place of (12) does not increase computing time and storage 
requirements, provided that the variables are evaluated in the following order at each 
time step: 

(i) Elevations II”,:’ are first evaluated over the whole grid using Eq. (26a). 
(ii) Columns of u and v values are computed alternately, using (26b) and 

(26~) in turn as the grid is swept in the positive x-direction, i.e., as m increases. For 
example, all u;:“~ are computed before any ZIS,+,~“; all vS,+,“~ are computed before any 
us + 312 
lll+l.il’ 

Reference to Fig. 2 will show that with this ordering, only the most recently 
computed value of each variable need be stored. The updated value of each variable 
can be stored in the location which held the previous value. On the understanding 
that the difference scheme (26) is used in conjunction with this left-to-right or “SX” 
sweep across the grid when computing velocities at each time step, it will be 
convenient to refer to (26) as the “+x modified Richardson-Sielecki scheme” or even 
more briefly as the “+x scheme.” 

8. STABILITY OF THE MODIFIED RICHARDSON-SIELECKI SCHEME 

On substituting the fundamental solution (13) in Eqs. (26) and following the same 
procedure as in Section 5, it is found that stability of the +x scheme depends on the 
roots of the quadratic 

Ak2-BA+A*=0, (27) 

where 

A = exp(iw . At), 

A = 1 + -yAt2 cos’ il. Ay . exp(-ik . Ax), 

B = 2 - +ff2At2 cos2 il. Ay - 4c2At2 
sin2 tk . Ax sin’ $1 . Ay 

Ax= 
+ 

AY’ I 

and A* denotes the complex conjugate of A. For stability both roots of (27) must 
satisfy (15). If the roots are written as 1, and A,, it follows from (27) that 
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and from this equation and (15) it follows that for stability, condition (16) must hold 
for both roots, which in turn implies (18), i.e., 1 sin fo I AtI < 1. Equation (27) can be 
rearranged to give the following dispersion relation for the +x scheme: 

sin’ lw . At = c2At2 
[ 

sin* $k. Ax sin* jl . Ay 
2 Ax2 + Ay* I 

+ [if. At. cos {(co . At - k . Ax). cos $1 a Ay]‘. (29a) 

It follows from (29a) by lengthy but routine analysis that the +x modified R-S 
scheme (26) has the same stability limit (20) as the original R-S scheme (12). 

9. FURTHER MODIFIED RICHARDSON~ELECKI SCHEMES 

The choice of direction in which to sweep across the grid when updating the 
velocities is obviously arbitrary. If the Coriolis terms in Eqs. (26b) and (26~) are 
replaced by 

and 

a very similar scheme results, except that to maintain the same economy in storage it 
is necessary at each time step to sweep across the grid in the negative x-direction, 
calculating columns of v’s and U’S alternately for decreasing values of m. This will be 
called a “-x modified R-S scheme” or “-x scheme.” 

In fact, with the arrangement that updated values immediately overwrite previous 
values, no programming changes are involved in switching from a tx scheme to a -x 
scheme, other than changing the direction of sweep. For this reason it is quite prac- 
ticable to program a model using the tx and -x schemes on alternate time steps so 
as to eliminate any bias caused by the directional nature of either scheme alone. Such 
an alternating sweep scheme will be termed a “+x/-x modified R-S scheme” or 
“+x/-x scheme.” 

With appropriate modifications to Eqs. (26), the grid could be swept in the positive 
or negative y-directions or alternately in both these directions, giving +y, -y or 
+y/-y modified R-S schemes. Indeed, since no programming change other than the 
order of computation is required, it would be possible to have any combination of the 
schemes so far mentioned. 
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Analysis of the -x scheme shows that the dispersion relation is 

sin $J . At = c*At* 
sin* Sk . Ax sin* 41. Ay 

Ax* 
+ 

AY* 1 
+ [if. At . cos +(w . At + k . Ax) cos ;l e Ayj2. Wb) 

The maximum permissible time step can be derived from this equation and is given 
by (20); i.e., the stability limit is the same as that for the +x scheme. It follows that 
the same criterion applies to the +x/-x scheme, which consists of alternate 
application of +x and -x schemes. In fact, it can be shown similarly that (20) holds 
for +y, --y and +y/-y schemes also. 

10. KELVIN WAVE SIMULATION WITH MODIFIED RICHARDSON~IELECKI SCHEMES 

Again, as a first test of the ability of modified R-S schemes to represent solutions 
of the shallow-water equations (l), consider the discrete analogs of the Kelvin waves 
of Section 2, that is, coastally bound travelling waves with zero transverse velocity 
and amplitude decaying exponentially in the seaward direction. 

A wave progressing in the positive x-direction in a model using the +x modified 
R-S scheme obeys the dispersion relation (29b). For relatively long waves, in the 
sense discussed in Section 6, the dispersion relations (29a) and (29b) reduce to the 
dispersion relation (3) of the continuous case. Thus the modified R-S schemes show 
an improvement over the original R-S scheme, which led to the faulty dispersion 
relation (2 1). 

Since the dispersion relations for tx and -x schemes both reduce to (3) in the 
relatively long wave approximation, it is necessary to consider (29a) and (29b) in full 
in order to discover whether there is any directional bias in tx and -x schemes and 
hence whether there is any advantage is using the +x/-x scheme. It can easily be 
verified by substitution in (26) that a wave travelling in either x-direction with u = 0 
satisfies 

sin’ $J . At = c*At* 
sin* ik s Ax 

Ax* ’ (30) 

Thus in order to obey the appropriate dispersion relation (29a), such a wave 
progressing in the positive xdirection in a tx scheme must also satisfy 

c2At2 
sin* il . Ay 

AY* 
+ [+f . At . cos f(u - At + 1 k( . Ax) cos il. Ay]* = 0. (31) 
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This leads to the following expression for 1 in terms of k and w: 

I= i$-tanh-’ .f-.Ay Iccos~(u.Attjk~Ax) . 
I 

(32)* 

On the other hand, a wave progressing in the positive x-direction in a -x scheme 
satisfies (29a) and (30) and hence 

l=i$tanh-’ f+~~~f(~e At-[~[Ax) . 1 (33)2 

As a numerical illustration, consider again the example discussed in Section 6. 
Equation (30) yields k = 5.1839 x 1O-6 m-’ and with this value, Eq. (32) gives 

while Eq. (33) gives 

I = i4.4665 x 1O-6 m-’ (34) 

I= i4.5161 x 10e6 rn-‘. (35) 

For the same values off and c, the value of I in the corresponding continuous case is 
(from (4)): 

I = i4.5088 x 10V6 m-‘. (36) 

Since the results from the tx and -x schemes, (34) and (35), bracket the desired 
result (36), it is to be expected that a similar wave in the +x/--x scheme with the 
same model parameters should have a value of I close to (36). 

In order to determine I for the +x/-x scheme, the following numerical experiment 
was performed using a model of a channel parallel to the x-axis, of width 16 . Ay and 
length 300 . Ax. The latter dimension was chosen to ensure that the computations in a 
central section of the channel, approximately one wavelength (36 . Ax) long, were 
unaffected by the boundary conditions at the ends of the channel for a least two 
complete cycles (approximately 102 time steps). A value of 1 intermediate between 
(35) and (36) was assumed and initial conditions were calculated from the formulas 

VSmn =e i’n’Ay sin[ws . At - lkj m . Ax], WI 

u ;;J/2 = (g/c)eih'Ay sin[w(st~)At-Jkl(m-+)Ax], (37b) 
0,;; “2 = 0, (37c) 

which represents a progressive Kelvin wave with elevation of unit magnitude. The 
model was run for two cycles during which the sum of the squares of the differences 

’ For numerical evaluation of (32) and (33) it is convenient to use tanh-‘x = i In I(1 +x)/( 1 -x)1 if 
.Y < I. 
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between the model elevations and those defined by (37a) were summed over all grid- 
points in the central section (one wavelength) of the model. The value of 1 was 
adjusted during subsequent runs until this accumulated square error was minimized, 
which occurred when 

I= i4.491 X 10m6 m-‘. (38) 

In this case then, the value of 1 for the +x/-x scheme is approximately equal to the 
average of the values of 1, (34) and (35), for the +x and -x schemes. With this value 
of 1, the maximum discrepancy between elevations computed with the model and 
those given by (37a) remained less than 0.005 m in the course of two complete 
cycles. During the same period the magnitude of transverse velocity u differed from 
zero by less than 0.002 m/set. (For comparison, the peak value of longitudinal 
velocity u was 0.362 m/set.) 

The value (38) is intermediate between (34) and (35) and satisfactorily close to the 
continuous case (36). No general conclusion can be drawn from this single 
experiment but the results encourage the expectation that the +x/-x scheme is 
preferable to the +x or -x schemes for general purposes. 

In an actual model, coastlines may be at any orientation to the coordinate axes. At 
the opposite extreme to the cases just discussed, one can take a Kelvin-type wave 
travelling along a coastline parallel to the y-axis in a model with +x, -x or +x/-x 
schemes, that is, the direction of travel of the wave is perpendicular to the direction in 
which the grid is swept in the difference calculations rather than parallel, as above. 
Equivalently, one can consider the same physical configuration as before, a wave 
travelling along a coast parallel to the x-axis but with ty, -y or ty/-y modified R-S 
schemes. The general dispersion relations are 

sin’ 1~ . At = c2At 
sin* ik . Ax sin* il. Ay 

2 AX2 
+ 

AY* 1 
+ [if. At. cos ;k . Ax cos +(w . At T 1. Ay)]* (39) 

with ty and -y schemes, respectively. For Kelvin type waves travelling parallel to 
the x-axis, Eq. (30) again holds and can be subtracted from (39). After some further 
algebra, one finds that for Kelvin waves travelling in the positive x-direction, 

l=-$tan-r -cosfw.At fsinfw.At+i 
I 

2c -1 
f.Ay.cosfIk(Ax I 1 ’ (40)3 

For example, with the numerical values quoted earlier in this section, Eq. (40) gives 

l= ~2.1392 x 10e8 t i4.4912 x lop6 m-‘, (41) 

’ Numerical evaluation of 1 from (40) is facilitated by using 
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where the negative and positive signs apply to +y and -,u schemes, respectively. Since 
the real part of 1 is non-zero, waves are slewed (see Fig. 3) but the effect is an order 
of magnitude smaller than with the original R-S scheme (see Section 6). Also, +J 
and -y schemes produce slewing in opposite directions, which suggests that in the 
alternating +y/-y scheme, these undesirable effects may cancel out. This was 
confirmed in numerical tests on a model similar to that used in the previous tests. 
With initial conditions computed using 

I= i4.4912 x 10m6 m-’ 

in Eqs. (37) an unslewed Kelvin wave was produced which propagated without 
significant change of form for the two-cycle duration of the test with the +yl-y 
scheme. During this period, errors in u and u were slightly smaller than in the 
corresponding test with the +X/-X scheme. 

11. CONCLUSIONS 

It has been shown that the plain Richardson-Sielecki (R-S) finite-difference 
scheme for the shallow-water equations can distort simulated long waves and that 
relatively simple modification of the scheme apparently eliminates this undesirable 
feature. The effects in question are discussed purely in the context of Kelvin waves in 
a linearized model with uniform mean water depth and straight coastlines. However, 
as the gravity and Coriolis terms were retained in the equations used and Kelvin 
waves (or analogous coastally bound waves) play a major role in most shallow-water 
models, it is reasonable to expect that similar distortion occurs when the R-S scheme 
is used in models with realistic bottom topography, friction and irregular coastlines. 
Possible distortion of fully two-dimensional long waves by the R-S scheme has not 
yet been investigated. 

The basic feature of the modified R-S scheme discussed in this paper consists of 
rearranging the order of computation so that the velocity components are computed 
in turn column by column as the model grid is swept in the positive or negative X- 
directions or row by row in the positive or negative y-directions. It is shown that 
some improvement in Kelvin wave simulation is achieved by executing the 
computational sweep in opposite directions on alternate time steps. It seems 
reasonable to suppose that removing directional bias on the computation by this 
means will improve the accuracy of more general realistic models also. 

The original R-S scheme achieves considerable storage and computing economies 
by requiring only the most recently computed values of any variable at any given 
stage of the computation. The modified R-S schemes preserve this useful property, 
even when a version with alternating directions of sweep is used. 
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